
An intelligent intrusion detection system (IDS) for anomaly

and misuse detection in computer networks

Ozgur Depren, Murat Topallar, Emin Anarim, M. Kemal Ciliz*

Bogazici University, Electrical and Electronics Engineering Department, Information and Communications Security (BUICS) Lab, Bebek, Istanbul, Turkey

Abstract

In this paper, we propose a novel Intrusion Detection System (IDS) architecture utilizing both anomaly and misuse detection approaches.

This hybrid Intrusion Detection System architecture consists of an anomaly detection module, a misuse detection module and a decision

support system combining the results of these two detection modules. The proposed anomaly detection module uses a Self-Organizing Map

(SOM) structure to model normal behavior. Deviation from the normal behavior is classified as an attack. The proposed misuse detection

module uses J.48 decision tree algorithm to classify various types of attacks. The principle interest of this work is to benchmark the

performance of the proposed hybrid IDS architecture by using KDD Cup 99 Data Set, the benchmark dataset used by IDS researchers. A rule-

based Decision Support System (DSS) is also developed for interpreting the results of both anomaly and misuse detection modules.

Simulation results of both anomaly and misuse detection modules based on the KDD 99 Data Set are given. It is observed that the proposed

hybrid approach gives better performance over individual approaches.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Intrusion detection; Anomaly detection; Misuse detection; SOM; Decision trees; J.48; KDD Cup 99; Hybrid intrusion detection
1. Introduction

As interconnections among computer systems grow

rapidly, network security is becoming a major challenge.

Computer networks against denial-of-service (DoS) attacks,

unauthorized disclosure of information and the modification

or destruction of data have to be protected and the

availability, confidentiality and integrity of critical infor-

mation systems have to be provided.

An IDS system is a defense system, which detects hostile

activities or exploits in a network.1,2 Existing IDS systems

can be divided into two catagories according to the detection

approaches: anomaly detection and misuse detection or

signature detection (Anderson, 1995; Rhodes, Mahaffey, &

Cannady, 2000; Tiwari, 2002). Misuse detection systems try

to match computer activity to stored signatures of known
0957-4174/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2005.05.002

* Corresponding author. Tel.: C90 212 359 6414.

E-mail address: ciliz@boun.edu.tr (M.K. Ciliz).
1 http://www.windowsecurity.com/articles/Intrusion_Detection_

Systems.html.
2 http://www.windowsecurity.com/articles/Why_is_a_firewall_alone_

not_enough_What_are_IDSes_and_why_are_they_worth_having.html.
exploits or attacks. In other words, misuse detection systems

use a priori knowledge on attacks to look for attack traces.

Anomaly detection is an approach to detect intrusions by

first learning the characteristics of normal activity. Then

systems are designed to detect anything that deviates from

normal activity (Kemmerer & Vigna, 2002; Ingham, 2003).

According to the resources they monitor, IDS systems

are divided into two categories: Host based IDS systems and

Network Based IDS systems (Anderson, 1995; Tiwari,

2002). Host based IDS systems are installed locally on host

machines. Host based IDS systems evaluate the activities

and access to key servers upon which a Host based IDS

agent has been placed (Lichodzijewski, Zincir-Heywood, &

Heywood, 2002). The network based IDS systems inspect

the packets passing through the network (Ingham, 2003;

Lichodzijewski, 2002).

In this work, a hybrid intrusion detection system (HIDS)

utilizing both anomaly and misuse detection is proposed.

The principle interest of this work is to benchmark the

performance available from the proposed IDS architecture

by using KDD 99 dataset, the benchmark dataset used by

IDS researchers. The proposed IDS architecture consists of

an anomaly detection module, a misuse detection module

and a decision support system combining the results of the

two detection modules.
Expert Systems with Applications 29 (2005) 713–722
www.elsevier.com/locate/eswa

http://www.windowsecurity.com/articles/Intrusion_Detection_Systems.html
http://www.windowsecurity.com/articles/Intrusion_Detection_Systems.html
http://www.windowsecurity.com/articles/Intrusion_Detection_Systems.html
http://www.windowsecurity.com/articles/Why_is_a_firewall_alone_not_enough_What_are_IDSes_and_why_are_they_worth_having.html
http://www.windowsecurity.com/articles/Why_is_a_firewall_alone_not_enough_What_are_IDSes_and_why_are_they_worth_having.html

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722714
KDD 99 dataset is used as the main intrusion detection

dataset for both training and testing (Stolfo et al., 1999;

DARPA Intrusion Detection Evaluation) different Intrusion

Detection schemes. Anomaly Detection Module is respon-

sible for detecting anomalous behaviors based on the trained

normal behavior model. A SOM is used to build normal

behavior model. Misuse Detection Module is responsible

for detecting pre-defined attacks based on their attack

signatures. The goal is to train the system with different

types of attacks data and model different types of attack

signatures. A C4.5 decision tree algorithm is used for

classifying attacks. The Decision Support System (DSS) is

responsible for interpreting the results of both anomaly and

misuse detection modules and reporting intrusion detection

activity. A rule-based DSS module is implemented and

successfully tested.
2. System architecture

In this work, an HIDS utilizing both anomaly and misuse

detection is proposed. As shown in the Fig. 1, the proposed

IDS architecture consists of an anomaly detection module, a

misuse detection module and a decision support system

combining the results of the two detection modules. In the

following sections, each module is explained in more detail.

2.1. Anomaly detection module

Anomaly detection is a key element of intrusion

detection in which deviations from normal behavior indicate

the presence of intentionally or unintentionally excited

attacks or faults. Anomaly detection approaches are based

on building models of normal data and detect deviations

from the normal model in observed data. Anomaly detection
Fig. 1. Proposed hybrid IDS architecture.
algorithms have the advantage that they can detect new

types of intrusions as deviations from normal usage.

In this work, in order to model network traffic, each

connection record is examined and basic traffic features are

extracted. After preprocessing, the goal of the intrusion

detection algorithm becomes to train the system with

normal data and model normal network traffic from the

given set of normal data. Then, the task would be to

determine whether the test data belong to ‘normal’ or to an

‘abnormal’ behavior from a given new test data. The

proposed Anomaly Detection Module is composed of three

submodules,

1. Preprocessing Module,

2. Anomaly Analyzer Modules and

3. Communication Module.

Each Anomaly Analyzer Module (TCP Anomaly

Analyzer, UDP Anomaly Analyzer, ICMP Anomaly

Analyzer) uses the SOM algorithm which is described in

Section 2.1.1 to built profiles of normal traffic. The profile

built in the Anomaly Analyzer Module will later be used to

determine if a network connection is normal or abnormal.

Communications Module handles the communications

through the Decision Support System (DSS). Fig. 2 displays

the block diagram of the Anomaly Detection Module.
2.1.1. Self-organizing maps

The SOM is a neural network model proposed by

Kohonen for analyzing and visualizing high dimensional

data (Kohonen, 2001). It belongs to the category of

competitive learning models which are commonly used

for various clustering problems successfully (Kohonen,

2001). The SOM is based on unsupervised learning to map

nonlinear statistical relationships between high-dimensional
Fig. 2. Proposed anomaly detection module block diagram.

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722 715
input data into two-dimensional lattice or grid which is also

called the output space. Self Organizing Maps efficiently

place similar patterns to adjacent locations in the output

space and provides projection and visualization options for

high dimensional data. In other words SOM provides

topology preserving mapping from the input space to the

two-dimensional lattice or grid of nodes3 (Kayacik, 2003).

2.1.1.1. Structure of the SOM model. A SOM model is

generally formed of neurons located on a regular, (usually

1- or 2-dimensional) lattice or grid. In the 2-dimensional

case the neurons of the map can be arranged either on a

rectangular or a hexagonal lattice.

Each neuron i of the SOM has an associated

d-dimensional prototype (aka weight, reference, codebook

or model) vector,

mi Z ½mi1mi2 /mid�;

where d is equal to the dimension of the input vectors3

(Kayacik, 2003).

The neurons that are adjacent, belong to the

1-neighborhood Ni1 of the neuron i. A neighborhood

function determines how strongly the neurons are connected

to each other. Neighborhood function and the number of

neurons determine the accuracy and the generalization

capability of the SOM mapping. The most commonly used

neighborhood function is the Gaussian neighborhood

function and given as

hciðtÞ Z exp
krc Krik

2

2s2ðtÞ

� �
(1)

where rc is the location of unit c on the map grid and the ri is

the neighborhood radius at time t. The learning rate s(t) is a

decreasing function of time between [0,1]. Two commonly

used forms are a linear function and a function inversely

proportional to time3 (Kayacik, 2003). For a detailed

treatment of SOM models, the reader is referred to

(Kohonen, 2001).

2.1.1.2. SOM training algorithm. Before the training, initial

values are given to the prototype vectors (this is usually

referred to as the weight initialization of the SOM model).

The SOM is very robust with respect to the initialization, but

proper initialization makes the algorithm converge faster to

a better solution. Typically one of the three following

initialization procedures is used: random initialization,

sample initialization and linear initialization3 (Kayacik,

2003).

In each training step, one sample vector x from the input

data set is chosen randomly and a similarity measure is

calculated between this chosen sample and all the weight

vectors of the map. The Best-Matching Unit (BMU),

denoted as c, is the unit whose weight vector has the
3 http://www.cis.hut.fi/projects/somtoolbox/documentation/.
greatest similarity with the input sample x. The similarity is

usually defined by means of a distance measure, typically

the Euclidian distance. Formally, the BMU is defined as the

neuron for which the following condition holds,

kx Kwck Z min
i
fkx Kwikg (2)

where k$k is chosen as the Euclidian norm.

After finding the BMU, the prototype vectors of the SOM

are updated. The prototype vectors of the BMU and its

topological neighbors are moved closer to the input vector

in the input space. This adaptation procedure stretches the

prototypes of the BMU and its topological neighbors

towards the sample vector. The SOM update rule for the

weight vector of the unit i is given as

wiðt C1Þ Z wiðtÞCaðtÞhciðtÞ½xðtÞKwiðtÞ� (3)

where t denotes time, a(t) is learning rate and hci(t) is the

neighborhood kernel around the winner unit c, with

neighborhood radius r(t), as defined in (1).

Also neighborhood radius typically decreases with time.

Since large neighborhood radius makes the SOM more

rigid, it is usually large in the beginning of training, and then

it is gradually decreased to a suitable final radius, for

example, one. Notice that if neighborhood radius is set to

zero (i.e. rZ0), the SOM algorithm reduces to k-means

algorithm.

The weighting factor mask can be used for weighting

variables according to their importance. With these changes,

the distance measure becomes:

kx Kmk2 Z
X
k2K

wkjxk Kmkj
2 (4)

where K is the set of variables of sample vector x. xk and mk

are the kth components of the sample and prototype vectors,

respectively, and wk is the kth mask value. Note that the

update rule does not change, therefore the ‘weighting

action’ only affects finding of the BMU.

After the training of the SOM structure is finished, the

final map converges to the probability density function of

the input data (Kohonen, 2001). This final structure is

simple and most importantly easy to visualize. Visualization

of the SOM structure can be done by using U-matrix or

Sammon’s mapping3 (Kayacik, 2003).
2.1.2. Preprocessing

In the KDD 99 Competition, raw packet based network

traffic data is collected from the network by a network

sniffer and it is processed into a stream of connections to

form the intrusion detection dataset. In the KDD 99

intrusion detection dataset, 41 features are derived to

summarize each connection information (Stolfo et al.,

1999; DARPA Intrusion Detection Evaluation). From each

connection, six basic features are used in this work. These

are listed as follows

http://www.cis.hut.fi/projects/somtoolbox/documentation/

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722716
1. Duration of the connection

2. Protocol type such as TCP, UDP or ICMP;

3. Service type such as FTP, HTTP, Telnet;

4. Connection status flag;

5. Total bytes sent to destination host;

6. Total bytes sent to source host;

In order to train the SOM architecture, several data

normalization and enumeration operations are necessary.

SOMs usually treat each feature independently and work

on normalized numeric variables. Therefore alphanumeric

variables in the data set have to be enumerated and then all

variables have to be normalized. Connection features—

Protocol type, Service type and Connection status flag—are

alphanumeric. As the SOM structure treats each feature

independently, each instance of an alphanumeric character

is mapped to sequential integer values. After enumeration

operation takes place, normalization is performed. The goal

of data normalization is that, none of components of input

vectors has an overwhelming influence on the training

result. Standard [0 1] normalization is used in this work.

The pre-simulation results of SOM training using either

[0 1] or [K1 1] normalization did not give acceptable

results. This is because, numerical features (like connection

duration, total bytes set to destination/source host) of the

connection feature vector have dynamic range values. As

connection features are normalized, feature values become

closer and cannot be detected by the SOM structure. For

example, in DoS attacks destination byte values have 0

bytes and source byte values have 40–50 bytes. However, in

normal connections both features have 40–50 bytes. For this

case, if a [0 1] normalization is performed,

50=5000000 Z 10K5 and 0=5000000 Z 0 (5)

we get two extreme values as shown in (5). These two

distinct values cannot be differentiated by the SOM

structure. If remaining four parameters are the same,

which is the case mostly in DoS attacks, this kind of attacks

are interpreted as normal connections and cannot be

detected. Therefore especially these two features, source

byte and destination byte, have to be examined in detail. In

order to accomplish this task, for both connection features

the ‘k-means algorithm’, which is an unsupervised learning

algorithm like SOM, is used. The learning procedure is

explained below:

1. Place k points into the source byte space to be clustered.

These points represent initial group centroids.

2. By using k-means algorithm, obtain k cluster centers

or groups (group of source byte values) and correspond-

ing variances.

ðSource byte valuesÞ 				/
k-means algorithm

½ðm1; s
2
1Þ; ðm2;s

2
2Þ

/ðmk;s
2
kÞ� (6)
3. For each cluster center value and variance pair, a

Gaussian function is defined. Therefore k gaussian

functions need to be defined.

4. For each source byte value, Gaussian function outputs

are calculated and each source byte value is represented

as Gaussian function outputs. Gaussian function outputs

represent the probability of belonging to each cluster

center for each source byte value.

5. This procedure is repeated for destination byte feature,

as well.

As a result, for each source byte value the probabilities of

belonging to each cluster center are calculated. Bu using the

above proposed approach, normalization problem defined

above has been overcome. Hence source byte value that

would be hard to distinguish after normalization can now be

differentiated by the SOM structure. Now, connection

feature length has become 16.
2.1.3. Anomaly analyzer modules

Anomaly analyzer modules—TCP Anomaly Analyzer,

UDP Anomaly Analyzer, ICMP Anomaly Analyzer—

operate on different protocols, however their processing

procedures are the same. Each Anomaly Analyzer Module

uses the SOM algorithm to build profiles of normal behavior.

Each SOM structure is trained with the corresponding normal

traffic data and the profile of normal behavior is modeled. Our

hypothesis is that normal traffic that represents normal

behavior would be clustered around one or more cluster

centers on the SOM lattice and any anomalous traffic

representing abnormal and possibly suspicious behavior

would be clustered outside of the normal clustering or would

be clustered inside the normal clustering with high

quantization error. Then, the profile built later is used to

determine if a network connection is normal or abnormal.

For each SOM structure there are two phases of

operation: SOM training phase and SOM classification

phase. In the SOM training phase, SOM structure is trained

with normal data and classifier parameters are calculated.

Classifier parameters are ‘SOM structure sMap’ and the

‘quantization vector’. In the SOM classification phase, a

decision is made by using the classifier parameters. Fig. 3

displays the overall block diagram which explains the

information flow in the training and classification phases of

the anomaly detection based on the SOM structure.

2.1.3.1. SOM training phase. In order to train the SOM

structure, first step is to enumerate and normalize input

vectors. These tasks are accomplished in the Preprocessing

Module. Input data set having input vectors of length 16 is

obtained as explained in Section 2.1.2. This data set contains

both normal traffic and the attacks traffic. In order to build

up an anomaly detection module, normal data is extracted

from the data set, preprocessed through Preprocessing

Module and SOM structure is trained with the data set

Fig. 3. Anomaly analyzer system architecture and data flow diagram.

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722 717
containing only normal connections feature vectors. SOM

training has two steps:

1. SOM initialization and

2. SOM training.

The flow diagram of the SOM Training Phase is shown in

Fig. 4.

2.1.3.2. SOM initialization. First of all in the initialization

phase, SOM structure is defined. Lattice or map size and

shape have to be defined. A Rectangular lattice and a map

size of [15,15] for TCP connections, [8,8] for UDP

connections and [6,6] for ICMP connections are used in

this work. Then, for all SOM structures, random initializa-

tion in which random values in the interval [0,1] are

assigned to the codebook vectors is implemented. Random

initialization is preferred since random initialization is much

simpler as far as computational complexity is concerned and

pre-simulation results show that PCA-initialization and

random initialization give similar results.

2.1.3.3. SOM training. SOM training is done in two phases.

The first phase is the ordering phase during which the

reference vectors of the map units are ordered. The second

phase is the fine tuning process. During the second phase,

the reference vectors in each unit converge to its ‘correct’

values. The second phase is usually longer than the first one.

Again, as in the ordering phase, training parameters are to

be defined before training and they are different from the

ordering phase. The learning rate is much smaller than that

of the ordering phase. The neighborhood radius is also

smaller. After these two phases of training, the map is ready

to be used for classification.
Fig. 4. The data flow diagram of
2.1.3.4. SOM classification phase. SOM classification

phase has two steps: SOM classifier parameters calcu-

lation step and SOM classifier step. In the SOM classifier

parameters calculation step, a quantization vector is built

by using training data. In the SOM classifier step,

decision indicating if the test connection is an attack or

not is made by using the quantization vector. The

classification process is displayed in Fig. 5 in block

diagram form.

2.1.3.5. SOM classifier parameters calculation. In order to

classify if a network connection is normal or not, the best

matching unit (bmu) and the quantization error (qe)

parameters are used. First, a fixed threshold is applied for

classification. If the quantization error is greater than the

threshold, it is classified as an anomaly. A variable

thresholding algorithm is applied for the classification and

the procedure is as follows:

1. Set a global threshold value (global_th), for qe

2. Calculate [bmu,qe] pairs for the network connection

feature vectors labeled as normal (training data)

3. Calculate max qe for each map unit (For example, TCP

map size used in this work is [15,15], there are 225

neurons and 225 qe values should be calculated)

4. Build up a quantization vector such that

a. If a map unit has no hit, then qe value of the quantization

vector is set to zero

b. If max qe for a map unit is smaller than global_th, then

qe value of the quantization vector is set max qe.

c. If max qe for a map unit is greater than global_th, then qe

value of the quantization vector is set global_th.

d. A safety margin is added to the qe values of the

quantization vector
the SOM training phase.

Fig. 5. The data flow diagram of the SOM classification phase.

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722718
For example, the size of the TCP Quantization Vector is

[225,1], since TCP map size is [15,15]. A safety margin is

added to be more realistic. Input vectors which are close to

each other are mapped into closer locations on the SOM

lattice. Therefore very close network connection vectors

which are not in the training data set of the same class

should hit the same neuron within the safety margin.

2.1.3.6. SOM classifier. Once the SOM structure sMap and

quantization vector are obtained, the classification process is

simple:

1. For each network connection feature vector calculate the

[bmu,qe] pair by using sMap

2. By using Quantization Vector calculate the quantization

threshold: ThZQV(bmu)

3. Classify the incoming network connection feature vector

as:

a. Classify connection as an attack if qeOTh

b. Classify connection as normal if qe!Th

4. Generate SOM classifier output or Anomaly Analyzer

Output
2.2. Misuse detection module

Misuse detection technique involves the comparison of a

user’s activities with the known behaviors of attackers

attempting to penetrate a system (Kumar & Spafford, 1994,

1995). While anomaly detection typically utilizes threshold

monitoring to indicate when a certain established metric has

been reached, misuse detection techniques frequently utilize

a rule-based approach. When applied to misuse detection,

the rules become scenarios for network attacks. The

intrusion detection mechanism identifies a potential attack

if a user’s activities are found to be consistent with the

established rules. The use of comprehensive rules is critical
in the application of expert systems for intrusion detection

(Cannady, 1998).

In misuse detection approach, an attack and the

characteristics of the attack that distinguish this attack

from normal data or traffic are defined. These characteristics

are known as the signature of an attack, and the signature

becomes part of a database of attack signatures. When the

IDS detects one these signatures, it raises an alarm.

Signature detection requires an attack to be studied before

it can be recognized. Systems protected by such a system are

vulnerable to new attacks until the updated database is

available. Therefore, a hybrid mechanism which incorpor-

ates anomaly detection and misuse detection is expected to

capture most attacks within a network under security

threats.

In this work, a type of a decision tree algorithm is used as

a misuse detection module. The rules which are generated

from the decision tree are then used to classify the attacks.
2.2.1. Decision trees for supervised learning

Decision tree algorithms are supervised learning algor-

ithms which recursively partition the data base on its

attributes, until some stopping condition is reached. This

recursive partitioning gives rise to a tree-like structure. The

aim is that the final partitions (leaves of the tree) are

homogeneous with respect to the classes, and the internal

nodes of the tree are decisions about the attributes that were

used to reach the leaves. The decisions are usually simple

attribute tests, using one attribute at a time to discriminate

the data. New data can be classified by following the

conditions defined at the nodes down. J.R. Quinlan has

popularized the decision tree approach. The latest public

domain implementation of Quinlan’s model is C4.5

(Quinlan, 1993). The Weka classifier package has its own

version of C4.5 known as J48. WEKA is open source Java

code created by researchers at the University of Waikato in

New Zealand (Witten & Frank, 1999).

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722 719
General decision tree approach can be specifically

summarized as below:

1. Choose an attribute that best differentiates the output

attribute values.

2. Create a separate tree branch for each value of the

chosen attribute.

3. Divide the instances into subgroups so as to reflect the

attribute values of the chosen node.

4. For each subgroup, terminate the attribute selection

process if:

a. All members of a subgroup have the same value for the

output attribute, terminate the attribute selection process

for the current path and label the branch on the current

path with the specified value.

b. The subgroup contains a single node or no further

distinguishing attributes can be determined. As in (a),

label the branch with the output value seen by the

majority of remaining instances.

5. For each subgroup created in (3) that has not been

labeled as terminal, repeat the above process.

The above algorithm is applied to the training data. The

created decision tree is usually tested on a test data set,

provided one is available. If test data is not available, J48

performs a cross-validation using the training data or split

the whole data set into three parts, training data, validation

data and test data (Witten & Frank, 1999).
2.2.2. Evaluation of machine learning and data mining

Any results from this machine learning procedure must

be evaluated before we can have any confidence in its

predictions. There are several standard methods for

evaluation. In this work cross validation and bootstrap

methods are used for evaluation.

Performance cannot be measured on the data set which is

used to train the classifier. This would give an overly
Fig. 6. The data was split into 3 parts, training data, validation data and test data.

best rules and test data for measuring rule accuracy. All three parts are independ
optimistic measure of its accuracy. The classifier may

overfit the training data and therefore evaluation on an

independent test data set is the most common way to obtain

an estimate of the classification accuracy on future unseen

data. If the amount of data available is large enough, then

partitioning the data into training and independent test sets

is the most common and fastest method of evaluation.

On smaller amounts of data, holding out a large enough

independent test set may mean that not enough data is

available for the training. In such cases, cross validation is

preferred. The data is partitioned into a fixed number (N) of

partitions or ‘folds’. N is commonly chosen as 10, although

3 is also a popular choice in most applications. A typical

example was displayed in Fig. 6 which shows the case for

NZ3. Each ‘fold’ is held out as test data in turn, while the

other (NK1) folds are used as the training data.

Performance of the classifiers produced for each of the N

folds is measured and then the N estimates are averaged to

give the final result. ‘Leave-one-out’ cross validation

scheme is standard cross validation taken to its extreme:

instead of 10 folds, each individual data is held out in turn so

there are as many folds as items in the data set. This

increases the amount of data available for training each

time, but it is a computationally expensive process to build

so many classifiers (Clare, 2003).

The bootstrap is a method that constructs a training set

by sampling with replacement from the whole data set

(Efron & Tibshirani, 1993). The test set comprises of the

data that are not used in the training set. This means that

the two sets are independent, but the training set can

contain repeated items. This allows a reasonable sized

training set to be chosen, while still keeping a test set.

Kohavi compares the bootstrap and cross validation

schemes, and show examples where each fails to give a

good estimate of accuracy, and compares their results on

standard data sets (Kohavi, 1995).
Training data was used for rule generation, validation data for selecting the

ent [23].

Table 1

Training parameters of the SOM structures used in the simulation tests

Training parameters Ordering phase Fine tuning phase

Neighborgood function Gaussian Gaussian

Radius [initial final] TCP: [15 1] TCP: [1 1]

UDP: [8 1] UDP: [1 1]

ICMP: [6 1] ICMP: [1 1]

Learning type Sequential Sequential

Learning rate 0.6 0.05

Learning function Linear Linear

Epochs 1 1

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722720
2.2.3. Important parameters of the decision tree algorithm

The most important parameter of the decision tree

algorithm J.48 is the confidence value. The confidence value

is used when pruning the tree (removing branches that are

deemed to provide little or no gain in statistical accuracy of

the model). A default value of 25% works reasonably well

in most cases, but it can be modified. However, if the

actual error rate on the real data (or the error rate on

cross-validation) is significantly higher than the error rate on

the training data, the confidence factor can be decreased

to cause more drastic pruning, and a more general model of

the data. If a more specific modeling based on the training

data is desired, the confidence factor can be increased,

which will decrease the amount of pruning that occurs

(Witten & Frank, 1999).

The other parameter determines the minimum number of

instances that must be present in the training data for a new

leaf to be created in the decision tree to handle those

particular instances. This parameter is used to create a more

generalized or specialized tree; a higher number will create

a more generalized tree and a lower number will create a

more specialized tree.

Another important parameter for J.48 is the number of

folds for cross-validation. It determines how to construct

and then test the model in the absence of test data. If the

number of folds for cross-validation is x, then (xK1)/x of the

training data is used to construct the model and 1/x of

the training data is used to test the model. This process is

then repeated ‘x’ times so that all the training data is used

exactly once in the test data. The ‘x’ different error estimates

are then averaged to yield an overall error estimate. While

extensive tests on numerous datasets have shown that ten-

fold cross-validation is one of the best numbers for getting

the most accurate error estimate, other values can be used.

Decreasing the number of folds from the default value of 10

will likely decrease the amount of time it takes for the

decision tree to be generated, and increasing the number of

folds will likely increase the amount of time it takes. Of

course, increasing the number of folds will create a

larger dataset for the training data, which may increase

accuracy of the decision tree; similarly, decreasing the

number of folds will create a smaller dataset for the training

data, which may decrease the accuracy of the decision tree

(Witten & Frank, 1999).

If the attributes which are used to make the partition is

symbolic, then there will be one branch per possible value of

this attribute. If the attribute is continuous, the branch will

usually be a two-way choice: comparing the value to see

whether it is less than a fixed constant or not. This constant

is determined by the range of values in the dataset (Witten &

Frank, 1999).

2.3. The decision support system

Decision Support System (DSS) is responsible for

interpreting the results of both anomaly and misuse
detection modules which are discussed in detail in Sections

2.1 and 2.2. DSS is the final module of the proposed

architecture which reports the intrusion detection activity to

the end user. Different types of DSS can be implemented to

accomplish this task. Rule-based DSS used in this work is

composed of simple user-defined rules to make a decision. It

is based on the heuristic rules defined by the end user. Main

advantage here is that, it is simple and fast. Several rule sets

can be defined. Rules which are used in this module is given

as follows,
2.3.1. Rules

(1) If anomaly module detects an attack and misuse module

detects an attack then it is an attack and misuse module

classifies this attack

(2) If anomaly module does not detect an attack and misuse

module detects an attack then it is an attack and

misuse module classifies this attack (simply trust

misuse module)

(3) If anomaly module detects an attack and misuse module

does not detect an attack then it is an attack and it is

defined as an unclassified attack.
3. Simulation results

In the simulation tests, the KDD data set is used which is

the common data set used in IDS research papers. 10 percent

of the KDD 99 data set is used in this work. Normal

connections are extracted from the data set and SOM

structures are trained with 50% of the normal connections.

For TCP, UDP and ICMP protocols, SOM structures

utilized a rectangular map shape. Random initialization is

used. For the TCP connections, a 15!15 map size, for the

UDP connections an 8!8 map size and for ICMP

connections a 6!6 map size is used. Training parameters

which are used in the simulation tests are shown in Table 1.

The preprocessed data set is fed to the J.48 decision tree

algorithm and all the attributes are selected to generate a J.

48 decision tree. A confidence value is used when pruning

the tree (removing branches that are deemed to provide little

or no gain in statistical accuracy of the model). Since a

wrong_fragment <= 0

| num_compromised <= 0

| | count <= 236

| | | dst_host_srv_diff_host_rate <= 0.24

| | | | dst_host_same_srv_rate <= 0.01

| | | | | src_bytes <= 1

| | | | | | rerror_rate <= 0.98

| | | | | | | serror_rate <= 0.32

| | | | | | | | count <= 2

| | | | | | | | | protocol_type = tcp: portsweep

| | | | | | | | | protocol_type = udp: satan

Fig. 7. A small part of a decision tree obtained for the KDD 99 Data Set,

showing decisions at the nodes, and final classification at the leaves.

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722 721
default value of 25% works reasonably well in most cases,

this default value is set for the evaluation. Then, both the ‘10

fold’ cross validation and bootstrap methods are used and

the results for ‘10 fold’ cross validation method is presented

in this work. Fig. 7 shows an example of a small part of a J.

48 decision tree obtained for the KDD 99 dataset.

After the construction of a J.48 decision tree, the best

rules are derived for each type of attack class. Some sample

rules, for portsweep and satan attacks, derived from the J.48

decision tree are given as follows:

The rule for the portsweep attack:

IF wrong_fragment !Z0 AND num_compromised

!Z0 AND count !Z2 AND dst_host_srv_diff_host_

rate !Z0.24 AND dst_host_same_srv_rate !Z0.01

AND src_bytes !Z1 AND rerror_rate !Z0.98 AND

serror_rate !Z0.32 AND protocol_typeZtcp

THEN attackZportsweep

The rule for the satan attack:

IF wrong_fragment !Z0 AND num_compromised

!Z0 AND count !Z2 AND dst_host_srv_diff_host_

rate !Z0.24 AND dst_host_same_srv_rate !Z0.01

AND src_bytes !Z1 AND rerror_rate !Z0.98 AND

serror_rate !Z0.32 AND protocol_typeZudp

THEN attackZsatan

The above two sample rules cover the attack types

‘portsweep and satan’. The remaining attacks are similarly

covered by the other rules generated from the rest of the J.48

decision tree. Then these rules which are generated from
Table 2

Intelligent IDS System detection results

Detection module Total # of instances Total # of attacks D

(d

Anomaly 199677 128452 1

Misuse 199677 128452 1

Hybrid 199677 128452 1
the decision tree are tested on the KDD 99 data for the

accuracy of the rules and detection rates, classification rates

and other performance criteria are computed. Simulations

are performed for the hybrid IDS model and the results for

each module and each type of attack is given in Table 2 and

Table 3.
4. Conclusions and future work

Simulation results of both anomaly and misuse detection

modules based on the KDD 99 data set are given in Table 2.

We obtained a detection rate of % 98.96 and a false positive

rate of % 1.01 for anomaly detection module and also a

classification rate of % 99.61 and a very low false positive

rate of % 0.20 are achieved for the misuse detection module.

As observed from these results, misuse module gives

very low false positive rates; on the other hand anomaly

detection module detects some type of attacks that misuse

module misses such as the ‘ftp write’ attack. However,

anomaly module also gives relatively higher false positive

rate.

The proposed hybrid IDS takes the advantages of both

modules and combines the outputs of these two modules

based on a simple decision support mechanism. As a result,

a detection rate of % 99.90, a classification rate of % 99.84

and a false positive rate of % 1.25 are achieved by the

proposed hybrid approach and these results are demon-

strated in Table 2 and Table 3. It is observed that the

proposed hybrid approach gives better performance over

individual approaches.

For future work, different implementations for anomaly

and misuse modules could be explored. For example,

temporal relations between successive connections can be

used for intrusion detection. For anomaly detection,

instead of analyzing the whole data set, the data set can

be first classified based on different ‘network services’ and

then the anomaly detection for each network service type

could be performed. For misuse detection module, instead

of analyzing and generating rules for the whole data set,

the data set can again be classified into different services

and rules for each service type can be generated with

better accuracy and less number of attributes. The

determination of the most dominant features for each

type of attack is an open area for intrusion detection

researchers.
etected

etection rate)

Missed (missed rate) False positives

(FP rate)

27118 (98.96%) 1334 (1.04%) 716 (1.01%)

27950 (99.61%) 502 (0.39%) 127 (0.20%)

28328 (99.90) 124 (0.1%) 797 (1.25%)

Table 3

Detection rates of each attack for the Intelligent IDS System

Attack name Protocol type Total # of attack

instances

Detected (detection

rate)

Classified

(classification rate)

Missed (missed rate)

Back TCP 2103 2103 (100%) 2102 (99.95%) 0 (0%)

Buffer overflow TCP 12 11 (91.67%) 10 (83.33%) 1 (8.33%)

Ftp write TCP 8 2 (25%) 0 (0%) 6 (75%)

Guess passwd TCP 53 52 (98.11%) 51 (96.23%) 1 (1.89%)

Imap TCP 50 50 (100%) 48 (96%) 0 (0%)

Ipsweep TCP 94 94 (100%) 94 (100%) 0 (0%)

Land TCP 17 17 (100%) 12 (70.59%) 0 (0%)

Load module TCP 9 7 (77.78%) 5 (55.56%) 2 (22.22%)

Multihop TCP 7 5 (71.43%) 5 (71.43%) 2 (28.57%)

Neptune TCP 41084 40998 (99.79%) 40950 (99.67%) 86 (0.21%)

Nmap TCP 103 103 (100%) 98 (95.16%) 0 (0%)

Perl TCP 2 2 (100%) 2 (100%) 0 (0%)

Phf TCP 3 3 (100%) 3 (100%) 0 (0%)

Portsweep TCP 639 639 (100%) 634 (99.22%) 0 (0%)

Rootkit TCP 7 4 (57.14%) 4 (57.14%) 3 (42.86%)

Satan TCP 1416 1408 (99.36%) 1408 (99.36%) 8 (0.64%)

Spy TCP 2 1 (50%) 0 (0%) 1 (50%)

Warezclient TCP 1020 1010 (99.02%) 1006 (98.62%) 10 (0.98%)

Warezmaster TCP 20 17 (85%) 17 (85%) 3 (15%)

Nmap UDP 25 24 (96%) 24 (96%) 1 (4%)

Satan UDP 170 170 (100%) 169 (99.41%) 0 (0%)

Teardrop UDP 397 397 (100%) 397 (100%) 0 (0%)

Ipsweep ICMP 768 768 (100%) 768 (100%) 0 (0%)

Nmap ICMP 103 103 (100%) 98 (95.16%) 0 (0%)

Pod ICMP 102 102 (100%) 102 (100%) 0 (0%)

Smurf ICMP 80238 80238 (100%) 80238 (100%) 0 (0%)

Total All 199677 128328 (99.90) 128245 (99.84%) 124 (0.1%)

O. Depren et al. / Expert Systems with Applications 29 (2005) 713–722722
References

Anderson, J. (1995). An introduction to neural networks. Cambridge: MIT

Press.

Cannady J. (1998). Artificial neural networks for misuse detection,

Proceedings of the 1998 National Information Systems Security

Conference (NISSC’98), (pp. 443–456). Arlington, VA.

Clare A. (2003). Machine learning and data mining for yeast functional

genomics, PhD Thesis, Department of Computer Science University of

Wales, Aberystwyth.

DARPA Intrusion Detection Evaluation, MIT Lincoln Laboratory, (http://

www.ll.mit.edu/IST/ideval).

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New

York, NY: Chapman and Hall.

Ingham K. (2003). Protecting network servers.Technical Report, Depart-

ment of Computer Science, University of New Mexico.

Kayacik H.G. (2003). Hierarchical self organizing map based IDS on KDD

benchmark, MS Thesis, Middle East Technical University.

Kemmerer, R. A., & Vigna, G. (2002). Intrusion detection: A brief history

and overview. IEEE Security and Privacy Magazine .

Kohonen, T. (2001). Self-organizing map (3rd ed.). Berlin: Springer-Verlag.

Kumar, S., & Spafford, E. (1994). A pattern matching model for misuse

intrusion detection Proceedings of the 17th national computer security

conference pp. 11–21.
Kumar, S., & Spafford, E., (1995). A software architecture to support

misuse intrusion detection, Technical report, Department of computer

Sciences, Purdue University, (CSD-TR-95-009).

Lichodzijewski P. (2002). Network based anomaly detection using self

organizing maps, Technical Report, Nova Scotia: Dalhousie University

Halifax.

Lichodzijewski, P., Zincir-Heywood, A., & Heywood, M. (2002). Host-

based intrusion detection using self-organizing maps Proceedings of

the 2002 IEEE IJCNN, Hawaii, USA.

Quinlan, J. R. (1993). C 4.5: programs for machine learning. San Mateo:

Morgan Kaufmann Publishers.

Rhodes, B., Mahaffey, J., & Cannady, J. (2000). Multiple self-organizing

maps for intrusion detection Proceedings of the 23rd national

information systems security conference, Baltimore, MD.

Stolfo SJ, et al., KDD cup 1999 data set, Irvine: University of California.

KDD repository, http://kdd.ics.uci.edu.

Tiwari, P. (2002). Intrusion detection Technical report, department of

electrical engineering indian institute of technology, Delhi.

Witten, I. H., & Frank, E. (1999). Data mining: practical machine learning

tools with Java implementations. San Francisco: Morgan Kaufmann

Publishers.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy

estimation and model selection. Proceedings international joint

conference on artificial intelligence pp. 1137–1143.

http://www.ll.mit.edu/IST/ideval
http://www.ll.mit.edu/IST/ideval
http://kdd.ics.uci.edu

	An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
	Introduction
	System architecture
	Anomaly detection module
	Misuse detection module
	The decision support system

	Simulation results
	Conclusions and future work
	References

